LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER – NOVEMBER 2007

MT 5502 - LINEAR ALGEBRA

Date : 29/10/2007 Time : 9:00 - 12:00

SECTION – A

Answer ALL the questions.

- 1. Let V be a vector space over F. If $a \in F, v \in V$ then prove that (-a)v = a(-v) = -(av).
- 2. Prove that any subset of a linearly independent set is also linearly independent.
- 3. Prove that the vectors (1, 0, 0), (1, 1, 0) and (1, 1, 1) form a basis for \mathbb{R}^3 .
- 4. Is the mapping $T: \mathbb{R}^2 \to \mathbb{R}$ defined by T(a,b) = ab a homomorphism? Justify.
- 5. If V is an inner product space then prove that

$\langle u, \alpha v + \beta w \rangle = \overline{\alpha} \langle u, v \rangle + \overline{\beta} \langle u, w \rangle$

- 6. Define eigenvalues and eigenvectors of a linear Transformation.
- 7. Define a unitary matrix and give an example.
- 8. If A and B are Hermitian show that (AB + BA) is Hermitian and (AB BA) is skew Hermitian.
- 2 0 ` 9. Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 \end{bmatrix}$ over the field of rational numbers. 1-1

10. If $S, T \in A(V)$ then prove that $(ST)^* = T^*S^*$

SECTION - B

Answer any FIVE questions.

ii.

- 11. If S and T are subsets of a vector space V over F, then prove that
 - S is a subset of V if and only if L(S) = Si.
 - $S \subseteq T$ implies that $L(S) \subseteq L(T)$
- 12. If V is a subspace of finite dimension and is the direct sum of its subspaces U and W, then prove that $\dim V = \dim U + \dim W$.
- 13. Let $T: U \to V$ be a homomorphism of two vector spaces over F, and suppose that U has finite dimension then prove that $\dim U = nullity \text{ of } T + rank \text{ of } T$
- 14. State and prove Schwarz inequality.
- 15. Prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is non zero.
- 16. If $V = R^3$ and let $T \in A(V)$ be defined by

 $T(a_1, a_2, a_3) = (3a_1 + a_3, -2a_1 + a_2, -a_1 + 2a_2 + 4a_3),$

What is the matrix of T relative to the basis $v_1 = (1, 0, 1), v_2 = (-1, 2, 1), v_3 = (2, 1, 1)$

AB 15

Max.: 100 Marks

 $(5 \times 8 = 40 \text{ marks})$

Dept. No.

(10 x 2 = 20 marks)

17. Find the rank of the matrix $\begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{pmatrix}$ over the field of rational numbers. 18. Prove that if $\langle T(v), T(v) \rangle = \langle v, v \rangle$ for all v in V , T is Unitary. SECTION – C	
Answer any TWO questions.	$(2 \times 20 = 40 \text{ marks})$
 Answer any TWO questions. (2 x 20 = 40 marks) 19. (a) Prove that the vector space V over F is a direct sum of two of its subspaces W₁ and W₂ if and only if V=W₁+W₂ and W₁ ∩ W₂=(0). (b) For A, B ∈ F_n and λ ∈ F. Show that tr(λA) = λtr(A) tr(AB) = tr(A) + tr(B) tr(AB) = tr(BA) 20. (a) Let V be a Vector space of finite dimension and W₁ and W₂ be subspaces of V such that V = W₁ + W₂ and dim V = dim W₁ + dim W₂. Prove that V = W₁ + @ W₂ (b) Let U and V be vector spaces over a field F. Prove that the set Hom(U,V), the set of all homomorphisms from U to V is a vector space over F. 21. (a) Prove that every finite-dimensional inner product space V has an orthonormal basis. (b) If T ∈ A(V) and T satisfies a polynomial f(x) ∈ F(x), prove that the minimal polynomial for T over F divides f(x). 22. (a) Investigate for what values of λ, μ the system of equations x + y + z = 6 x + 2y + 3z = 10 x + 2y + 4z = μ over the trainonal field has (i) no solution, (ii) a unique solution (iii) an infinite number of solutions. (b) Prove that the linear transformation T on V is unitary if and only if T*T=I. (c) Prove that the eigenvalues of a unitary transformation are all of absolute value 1. 	