LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2007
MT 5502-LINEAR ALGEBRA

Date : 29/10/2007
Time : 9:00-12:00
Dept. No. \square Max. : 100 Marks

SECTION - A

Answer ALL the questions.
($10 \times 2=20$ marks)

1. Let V be a vector space over F. If $a \in F, v \in V$ then prove that $(-a) v=a(-v)=-(a v)$.
2. Prove that any subset of a linearly independent set is also linearly independent.
3. Prove that the vectors $(1,0,0),(1,1,0)$ and $(1,1,1)$ form a basis for R^{3}.
4. Is the mapping $T: R^{2} \rightarrow R$ defined by $T(a, b)=a b$ a homomorphism? Justify.
5. If V is an inner product space then prove that

$$
\langle u, \alpha v+\beta w\rangle=\bar{\alpha}\langle u, v\rangle+\bar{\beta}\langle u, w\rangle
$$

6. Define eigenvalues and eigenvectors of a linear Transformation.
7. Define a unitary matrix and give an example.
8. If A and B are Hermitian show that $(A B+B A)$ is Hermitian and $(A B-B A)$ is skew Hermitian.
9. Find the rank of the matrix $A=\left(\begin{array}{ll}2 & 0 \\ 1 & 1 \\ 1 & -1\end{array}\right)$ over the field of rational numbers.
10. If $S, T \in A(V)$ then prove that $(S T) *=T * S *$

SECTION - B

Answer any FIVE questions.

$$
\text { (} 5 \times 8=40 \text { marks })
$$

11. If S and T are subsets of a vector space V over F, then prove that
i. $\quad S$ is a subset of V if and only if $L(S)=S$
ii. $\quad S \subseteq T$ implies that $L(S) \subseteq L(T)$
12. If V is a subspace of finite dimension and is the direct sum of its subspaces U and W, then prove that $\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} W$.
13. Let $T: U \rightarrow V$ be a homomorphism of two vector spaces over F, and suppose that U has finite dimension then prove that $\operatorname{dim} U=$ nullity of $T+\operatorname{rank}$ of T
14. State and prove Schwarz inequality.
15. Prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is non zero.
16. If $V=R^{3}$ and let $T \in A(V)$ be defined by

$$
T\left(a_{1}, a_{2}, a_{3}\right)=\left(3 a_{1}+a_{3},-2 a_{1}+a_{2},-a_{1}+2 a_{2}+4 a_{3}\right),
$$

What is the matrix of T relative to the basis $v_{l}=(1,0,1), v_{2}=(-1,2,1), v_{3}=(2,1,1)$
17. Find the rank of the matrix $\left(\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right)$ over the field of rational numbers.
18. Prove that if $\langle T(v), T(v)\rangle=\langle v, v\rangle$ for all v in V, T is Unitary.

SECTION - C

Answer any TWO questions.

($\mathbf{2} \times 20=40$ marks)

19. (a) Prove that the vector space V over F is a direct sum of two of its subspaces W_{1} and W_{2} if and only if $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=(0)$.
(b) For $A, B \in F_{n}$ and $\lambda \in F$, Show that
(1) $\operatorname{tr}(\lambda A)=\lambda \operatorname{tr}(A)$
(2) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
(3) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
20. (a) Let V be a Vector space of finite dimension and W_{I} and W_{2} be subspaces of V such that $V=W_{1}+W_{2}$ and $\operatorname{dim} V=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$. Prove that $V=W_{1} \oplus W_{2}$
(b) Let U and V be vector spaces over a field F. Prove that the set $\operatorname{Hom}(U, V)$, the set of all homomorphisms from U to V is a vector space over F.
21. (a) Prove that every finite-dimensional inner product space V has an orthonormal basis.
(b) If $T \in A(V)$ and T satisfies a polynomial $f(x) \in F(x)$, prove that the minimal polynomial for T over F divides $f(x)$.
22. (a) Investigate for what values of λ, μ the system of equations

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=10 \\
& x+2 y+\lambda z=\mu
\end{aligned}
$$

over the rational field has (i) no solution, (ii) a unique solution (iii) an infinite number of solutions.
(b) Prove that the linear transformation T on V is unitary if and only if $T^{*} T=I$.
(c) Prove that the eigenvalues of a unitary transformation are all of absolute value 1 .

